
BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Question Bank

System Analysis and Design

BBA-306-B

Unit-1

Q1. Give Introduction to Analysis and Design?

Q2. What is SDLC. Explain with the help of

Diagram?

Q3. Describe Case tools for Analyst?

Q4.Specify role of System Analyst?

Q5. Explain ER data Models?

Q6. What is Feasibility Study?

Q7. What is Economic

Feasibility?

Q8. What is Technical Feasibility?

Q9. What is Operational Feasibility?
Unit-2

Q1. What are DFD’s?

Q2. What is Form Design?

Q3. What is Screen Design?

Q4. What is Report Design?

Q5. What is structure Chart?

Q6. What is Data Base Definitions?

Q7. What is Equipment Specification?

Q8. What are Personnel Estimates?

Q9. What is I-O Design?

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

 Unit-3

 Q1. What is Data Dictionary?

Q2.What are decision tables?

Q3. What are decision Trees?

Q4. What are Education and Training System?

Q5. What is Software Testing

Q6. What is Maintenance and Review?

Unit-4

 Q1. What is distributed data Processing?

 Q2. What is Real Time System?

Q3. What is the Evaluation of Distributing system?

Q4. How to design distributed data base?

Q5.What is Event based Real time analysis tools?

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

SYSTEM ANALYSIS AND DESIGN

BBA-306-B

UNIT-1

Introduction to analysis and design

Systems Analysis

It is a process of collecting and interpreting facts, identifying the problems, and decomposition of a
system into its components.

System analysis is conducted for the purpose of studying a system or its parts in order to identify its

objectives. It is a problem solving technique that improves the system and ensures that all the

components of the system work efficiently to accomplish their purpose.

Analysis specifies what the system should do.

Systems Design

It is a process of planning a new business system or replacing an existing system by defining its

components or modules to satisfy the specific requirements. Before planning, you need to understand the

old system thoroughly and determine how computers can best be used in order to operate efficiently.

System Design focuses on how to accomplish the objective of the system.

System Analysis and Design (SAD) mainly focuses on −

 Systems

 Processes

 Technology

Software Development Life Cycle (SDLC) is a process used by the software industry to design, develop

and test high quality softwares. The SDLC aims to produce a high-quality software that meets or exceeds

customer expectations, reaches completion within times and cost estimates.

 SDLC is the acronym of Software Development Life Cycle.

 It is also called as Software Development Process.

 SDLC is a framework defining tasks performed at each step in the software development

process.

 ISO/IEC 12207 is an international standard for software life-cycle processes. It aims to

be the standard that defines all the tasks required for developing and maintaining

software.

What is SDLC?

SDLC is a process followed for a software project, within a software organization. It consists of a
detailed plan describing how to develop, maintain, replace and alter or enhance specific

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

software. The life cycle defines a methodology for improving the quality of software and the overall
development process.

The following figure is a graphical representation of the various stages of a typical SDLC.

A typical Software Development Life Cycle consists of the following stages − Stage 1:

Planning and Requirement Analysis

Requirement analysis is the most important and fundamental stage in SDLC. It is performed by
the senior members of the team with inputs from the customer, the sales department, market surveys and

domain experts in the industry. This information is then used to plan the basic project approach and to

conduct product feasibility study in the economical, operational and technical areas.

Planning for the quality assurance requirements and identification of the risks associated with the project

is also done in the planning stage. The outcome of the technical feasibility study is to define the various

technical approaches that can be followed to implement the project successfully with minimum risks.

Stage 2: Defining Requirements

Once the requirement analysis is done the next step is to clearly define and document the product

requirements and get them approved from the customer or the market analysts. This is done through an
SRS (Software Requirement Specification) document which consists of all the product requirements to

be designed and developed during the project life cycle.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

Stage 3: Designing the Product Architecture

SRS is the reference for product architects to come out with the best architecture for the product to be

developed. Based on the requirements specified in SRS, usually more than one design approach for the

product architecture is proposed and documented in a DDS - Design Document Specification.

This DDS is reviewed by all the important stakeholders and based on various parameters as risk
assessment, product robustness, design modularity, budget and time constraints, the best design approach

is selected for the product.

A design approach clearly defines all the architectural modules of the product along with its

communication and data flow representation with the external and third party modules (if any). The

internal design of all the modules of the proposed architecture should be clearly defined with the
minutest of the details in DDS.

Stage 4: Building or Developing the Product

In this stage of SDLC the actual development starts and the product is built. The programming code is

generated as per DDS during this stage. If the design is performed in a detailed and organized manner,

code generation can be accomplished without much hassle.

Developers must follow the coding guidelines defined by their organization and programming tools like

compilers, interpreters, debuggers, etc. are used to generate the code. Different high level programming

languages such as C, C++, Pascal, Java and PHP are used for coding. The programming language is
chosen with respect to the type of software being developed.

Stage 5: Testing the Product

This stage is usually a subset of all the stages as in the modern SDLC models, the testing activities are

mostly involved in all the stages of SDLC. However, this stage refers to the testing only stage of the

product where product defects are reported, tracked, fixed and retested, until the product reaches the
quality standards defined in the SRS.

Stage 6: Deployment in the Market and Maintenance

Once the product is tested and ready to be deployed it is released formally in the appropriate market.

Sometimes product deployment happens in stages as per the business strategy of that organization. The

product may first be released in a limited segment and tested in the real business environment (UAT-
User acceptance testing).

Then based on the feedback, the product may be released as it is or with suggested enhancements in the

targeting market segment. After the product is released in the market, its maintenance is done for the

existing customer base.

SDLC Models

There are various software development life cycle models defined and designed which are followed
during the software development process. These models are also referred as Software Development

Process Models". Each process model follows a Series of steps unique to its type to ensure success in the

process of software development.

Following are the most important and popular SDLC models followed in the industry −

 Waterfall Model

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

 Iterative Model

 Spiral Model

 V-Model

 Big Bang Model

CASE TOOLS FOR ANALYST

CASE Tools

CASE tools are set of software application programs, which are used to automate SDLC activities.

CASE tools are used by software project managers, analysts and engineers to develop software system.

There are number of CASE tools available to simplify various stages of Software Development Life

Cycle such as Analysis tools, Design tools, Project management tools, Database Management tools,
Documentation tools are to name a few.

Use of CASE tools accelerates the development of project to produce desired result and helps to uncover

flaws before moving ahead with next stage in software development.

Components of CASE Tools

CASE tools can be broadly divided into the following parts based on their use at a particular SDLC

stage:

 Central Repository - CASE tools require a central repository, which can serve as a

source of common, integrated and consistent information. Central repository is a central

place of storage where product specifications, requirement documents, related reports

and diagrams, other useful information regarding management is stored. Central

repository also serves as data dictionary.

 Upper Case Tools - Upper CASE tools are used in planning, analysis and design stages

of SDLC.

 Lower Case Tools - Lower CASE tools are used in implementation, testing and

maintenance.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

 Integrated Case Tools - Integrated CASE tools are helpful in all the stages of SDLC,
from Requirement gathering to Testing and documentation.

CASE tools can be grouped together if they have similar functionality, process activities and capability

of getting integrated with other tools.

Scope of Case Tools

The scope of CASE tools goes throughout the SDLC. Case

Tools Types

Now we briefly go through various CASE tools Diagram

tools

These tools are used to represent system components, data and control flow among various
software components and system structure in a graphical form. For example, Flow Chart Maker tool for
creating state-of-the-art flowcharts.

Process Modeling Tools

Process modeling is method to create software process model, which is used to develop the software.

Process modeling tools help the managers to choose a process model or modify it as per the requirement
of software product. For example, EPF Composer

Project Management Tools

These tools are used for project planning, cost and effort estimation, project scheduling and resource

planning. Managers have to strictly comply project execution with every mentioned step in software
project management. Project management tools help in storing and sharing project information in real-

time throughout the organization. For example, Creative Pro Office, Trac Project, Basecamp.

Documentation Tools

Documentation in a software project starts prior to the software process, goes throughout all phases of

SDLC and after the completion of the project.

Documentation tools generate documents for technical users and end users. Technical users are mostly

in-house professionals of the development team who refer to system manual, reference manual, training

manual, installation manuals etc. The end user documents describe the functioning and how-to of the
system such as user manual. For example, Doxygen, DrExplain, Adobe RoboHelp for documentation.

Analysis Tools

These tools help to gather requirements, automatically check for any inconsistency, inaccuracy in the

diagrams, data redundancies or erroneous omissions. For example, Accept 360, Accompa, Case

Complete for requirement analysis, Visible Analyst for total analysis.

Design Tools

These tools help software designers to design the block structure of the software, which may further be

broken down in smaller modules using refinement techniques. These tools provides

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

detailing of each module and interconnections among modules. For example, Animated Software Design

Configuration Management Tools

An instance of software is released under one version. Configuration Management tools deal with –

 Version and revision management

 Baseline configuration management

 Change control management

CASE tools help in this by automatic tracking, version management and release management. For
example, Fossil, Git, Accu REV.

Change Control Tools

These tools are considered as a part of configuration management tools. They deal with changes made to

the software after its baseline is fixed or when the software is first released. CASE tools automate
change tracking, file management, code management and more. It also helps in enforcing change policy

of the organization.

Programming Tools

These tools consist of programming environments like IDE (Integrated Development Environment), in-

built modules library and simulation tools. These tools provide comprehensive aid in building software
product and include features for simulation and testing. For example, Cscope to search code in C,

Eclipse.

Prototyping Tools

Software prototype is simulated version of the intended software product. Prototype provides initial look

and feel of the product and simulates few aspect of actual product.

Prototyping CASE tools essentially come with graphical libraries. They can create hardware independent

user interfaces and design. These tools help us to build rapid prototypes based on existing information.

In addition, they provide simulation of software prototype. For example, Serena prototype composer,
Mockup Builder.

Web Development Tools

These tools assist in designing web pages with all allied elements like forms, text, script, graphic and so

on. Web tools also provide live preview of what is being developed and how will it look after

completion. For example, Fontello, Adobe Edge Inspect, Foundation 3, Brackets.

Quality Assurance Tools

Quality assurance in a software organization is monitoring the engineering process and methods adopted

to develop the software product in order to ensure conformance of quality as per organization standards.

QA tools consist of configuration and change control tools and software testing tools. For example,
SoapTest, AppsWatch, JMeter.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

Maintenance Tools

Software maintenance includes modifications in the software product after it is delivered. Automatic

logging and error reporting techniques, automatic error ticket generation and root cause Analysis are few

CASE tools, which help software organization in maintenance phase of SDLC. For example, Bugzilla

for defect tracking, HP Quality Center.

Role of Systems analyst

A systems analyst is an information technology (IT) professional who specializes in analyzing, designing
and implementing information systems. Systems analysts assess the suitability of information systems in
terms of their intended outcomes and liaise with end users, software vendors and programmers in order to

achieve these outcomes.[1] A systems analyst is a person who uses analysis and design techniques to solve
business problems using information technology. Systems analysts may serve as change agents who
identify the organizational improvements needed, design systems to implement those changes, and train

and motivate others to use the systems.[2]

Although they may be familiar with a variety of programming languages, operating systems, and

computer hardware platforms, they do not normally involve themselves in the actual

hardware or software development. They may be responsible for developing cost analysis, design

considerations, staff impact amelioration, and implementation timelines.

A systems analyst is typically confined to an assigned or given system and will often work in

conjunction with a business analyst. These roles, although having some overlap, are not the same. A

business analyst will evaluate the business need and identify the appropriate solution and, to some
degree, design a solution without diving too deep into its technical components, relying instead on a

systems analyst to do so. A systems analyst will often evaluate and modify code as well as review

scripting.

Some dedicated professionals possess practical knowledge in both areas (business and systems analysis)
and manage to successfully combine both of these occupations, effectively blurring the line between

business analyst and systems analyst.

 Roles

 Identify, understand and plan for organizational and human impacts of planned systems, and

ensure that new technical requirements are properly integrated with existing processes and

skill sets.

 Plan a system flow from the ground up.

 Interact with internal users and customers to learn and document requirements that are then

used to produce business required documents.

 Write technical requirements from a critical phase.

 Interact with software architect to understand software limitations.

 Help programmers during system development, e.g. provide use

cases, flowcharts, UML and BPMN diagrams.

 Document requirements or contribute to user manuals.

 Whenever a development process is conducted, the system analyst is responsible for

designing components and providing that information to the developer.

https://en.wikipedia.org/wiki/Information_technology
https://en.wikipedia.org/wiki/Information_system
https://en.wikipedia.org/wiki/Systems_analyst#cite_note-Shelly_et_al.-1
https://en.wikipedia.org/wiki/Systems_analyst#cite_note-15-1121_Computer_Systems_Analysts-2
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Business_analyst
https://en.wikipedia.org/wiki/Use_cases
https://en.wikipedia.org/wiki/Use_cases
https://en.wikipedia.org/wiki/Use_cases
https://en.wikipedia.org/wiki/Use_cases
https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/BPMN

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

What is Entity Relationship Diagram (ERD)?

Database is absolutely an integral part of software systems. To fully utilize ER Diagram in database

engineering guarantees you to produce high-quality database design to use in database creation,

management, and maintenance. An ER model also provides a means for communication.

Today we're going to walk you through everything you need to know about ER Diagramming. By

reading this ERD guide, you will get the essential knowledge and skills about ER Diagrams and database

design. You will learn things like what is ERD, why ERD, ERD notations, how to

draw ERD, etc. along with a bunch of ERD examples. What

is an ER diagram (ERD)?

First of all, what is an Entity Relationship Diagram?

Entity Relationship Diagram, also known as ERD, ER Diagram or ER model, is a type of

structural diagram for use in database design. An ERD contains different symbols and

connectors that visualize two important information: The major entities within the system

scope, and the inter-relationships among these entities.

And that's why it's called "Entity" "Relationship" diagram (ERD)!

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

When we talk about entities in ERD, very often we are referring to business objects such as

people/roles (e.g. Student), tangible business objects (e.g. Product), intangible business objects (e.g.

Log), etc. "Relationship" is about how these entities relate to each other within the system.

In a typical ER design, you can find symbols such as rounded rectangles and connectors (with different

styles of their ends) that depict the entities, their attributes, and inter-relationships.

When to draw ER Diagrams?

So, when do we draw ERDs? While ER models are mostly developed for designing relational databases

in terms of concept visualization and in terms of physical database design, there are

still other situations when ER diagrams can help. Here are some typical use cases.

 Database design - Depending on the scale of change, it can be risky to alter a database

structure directly in a DBMS. To avoid ruining the data in a production database, it is

important to plan out the changes carefully. ERD is a tool that helps. By drawing ER

diagrams to visualize database design ideas, you have a chance to identify the mistakes

and design flaws, and to make corrections before executing the changes in the database.

 Database debugging - To debug database issues can be challenging, especially when

the database contains many tables, which require writing complex SQL in getting the

information you need. By visualizing a database schema with an ERD, you have a full

picture of the entire database schema. You can easily locate entities, view their

attributes and identify the relationships they have with others. All these allow you to

analyze an existing database and to reveal database problems easier.

 Database creation and patching - Visual Paradigm, an ERD tool, supports a database

generation tool that can automate the database creation and patching process by means

of ER diagrams. So, with this ER Diagram tool, your ER design is no longer just a

static diagram but a mirror that reflects truly the physical database structure.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

 Aid in requirements gathering - Determine the requirements of an information system

by drawing a conceptual ERD that depicts the high-level business objects of the system.

Such an initial model can also be evolved into a physical database model that aids the

creation of a relational database, or aids in the creation of process maps and data flow

modes.

FEASIBILITY STUDY

 Feasibility study

A feasibility study is an assessment of the practicality of a proposed project or system. A feasibility

study aims to objectively and rationally uncover the strengths and weaknesses of an existing business or

proposed venture, opportunities and threats present in the natural environment, the resources required to

carry through, and ultimately the prospects for success. In its simplest terms, the two criteria to judge
feasibility are cost required and value to be attained.

A well-designed feasibility study should provide a historical background of the business or project,

a description of the product or service, accounting statements, details of

the operations and management, marketing research and policies, financial data, legal requirements and

tax obligations. Generally, feasibility studies precede technical development and project implementation.

A feasibility study evaluates the project's potential for success; therefore, perceived objectivity is an
important factor in the credibility of the study for potential investors and lending institutions. It must

therefore be conducted with an objective, unbiased approach to provide information upon which

decisions can be based.

Technical feasibility

This assessment is based on an outline design of system requirements, to determine whether the company

has the technical expertise to handle completion of the project.When writing a feasibility report, the

following should be taken to consideration:

 A brief description of the business to assess more possible factors which could affect the

study

 The part of the business being examined

 The human and economic factor

 The possible solutions to the problem

At this level, the concern is whether the proposal is both technically and legally feasible (assuming
moderate cost).

The technical feasibility assessment is focused on gaining an understanding of the present technical

resources of the organization and their applicability to the expected needs of the proposed system. It is

an evaluation of the hardware and software and how it meets the need of the proposed system

Method of production

The selection among a number of methods to produce the same commodity should be undertaken first.

Factors that make one method being preferred to other method in agricultural projects are the following:

 Availability of inputs or raw materials and their quality and prices.

https://en.wikipedia.org/wiki/Natural_environment
https://en.wikipedia.org/wiki/Natural_environment
https://en.wikipedia.org/wiki/Resources
https://en.wikipedia.org/wiki/Cost
https://en.wikipedia.org/wiki/Value_(economics)
https://en.wikipedia.org/wiki/Product_(business)
https://en.wikipedia.org/wiki/Service_(economics)
https://en.wikipedia.org/wiki/Business_operations
https://en.wikipedia.org/wiki/Management
https://en.wikipedia.org/wiki/Management
https://en.wikipedia.org/wiki/Project
https://en.wikipedia.org/wiki/Legally

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

 Availability of markets for outputs of each method and the expected prices for these outputs.

 Various efficiency factors such as the expected increase in one additional unit of fertilizer or

productivity of a specified crop per one thing

Production technique

After we determine the appropriate method of production of a commodity, it is necessary to look for the
optimal technique to produce this commodity.

Project requirements

Once the method of production and its technique are determined, technical people have to determine the

projects' requirements during the investment and operating periods. These include:

 Determination of tools and equipment needed for the project such as drinkers and feeders or

pumps or pipes …etc.

 Determination of projects' requirements of constructions such as buildings, storage, and

roads …etc. in addition to internal designs for these requirements.

 Determination of projects' requirements of skilled and unskilled labor and managerial and

financial labor.

 Determination of construction period concerning the costs of designs and consultations and

the costs of constructions and other tools.

 Determination of minimum storage of inputs, cash money to cope with operating and

contingency costs.

Project location

The most important factors that determine the selection of project location are the following:

 Availability of land (proper acreage and reasonable costs).

 The impact of the project on the environment and the approval of the concerned institutions

for license.

 The costs of transporting inputs and outputs to the project's location (i.e., the distance from

the markets).

 Availability of various services related to the project such as availability of extension

services or veterinary or water or electricity or good roads ...etc.

Legal feasibility

It determines whether the proposed system conflicts with legal requirements, e.g., a data processing

system must comply with the local data protection regulations and if the proposed venture is
acceptable in accordance to the laws of the land.

Operational feasibility study

Operational feasibility is the measure of how well a proposed system solves the problems, and takes
advantage of the opportunities identified during scope definition and how it satisfies the requirements

identified in the requirements analysis phase of system development.

The operational feasibility assessment focuses on the degree to which the proposed development project

fits in with the existing business environment and objectives with regard to development schedule,

delivery date, corporate culture and existing business processes.

To ensure success, desired operational outcomes must be imparted during design and development.

These include such design-dependent parameters as reliability, maintainability, supportability, usability,

producibility, disposability, sustainability, affordability and others.

https://en.wikipedia.org/wiki/Corporate_culture

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

These parameters are required to be considered at the early stages of design if desired operational
behaviours are to be realised. A system design and development requires appropriate and timely
application of engineering and management efforts to meet the previously mentioned parameters. A
system may serve its intended purpose most effectively when its technical and operating characteristics
are engineered into the design. Therefore, operational feasibility is a critical aspect of systems

engineering that needs to be an integral part of the early design phases.[11]

Time feasibility

A time feasibility study will take into account the period in which the project is going to take up to its

completion. A project will fail if it takes too long to be completed before it is useful.

Typically this means estimating how long the system will take to develop, and if it can be completed in a

given time period using some methods like payback period. Time feasibility is a measure of how

reasonable the project timetable is. Given our technical expertise, are the project deadlines reasonable?
Some projects are initiated with specific deadlines. It is necessary to determine whether the deadlines are

mandatory or desirable

Resource feasibility

Describe how much time is available to build the new system, when it can be built, whether it interferes

with normal business operations, type and amount of resources required, dependencies, and

developmental procedures with company revenue prospectus.

Financial feasibility

In case of a new project, financial viability can be judged on the following parameters:

 Total estimated cost of the project

 Financing of the project in terms of its capital structure, debt to equity ratio and promoter's

share of total cost

 Existing investment by the promoter in any other business

 Projected cash flow and profitability

The financial viability of a project should provide the following information:[12]

 Full details of the assets to be financed and how liquid those assets are.

 Rate of conversion to cash-liquidity (i.e., how easily the various assets can be converted to

cash).

 Project's funding potential and repayment terms.

 Sensitivity in the repayments capability to the following factors:

o Mild slowing of sales.

o Acute reduction/slowing of sales.

o Small increase in cost.

o Large increase in cost.

o Adverse economic conditions.

In 1983 the first generation of the Computer Model for Feasibility Analysis and Reporting (COMFAR), a

computation tool for financial analysis of investments, was released. Since then, this United Nations

Industrial Development Organization (UNIDO) software has been developed to also support the economic
appraisal of projects. The COMFAR III Expert is intended as an aid in the analysis of investment

projects. The main module of the program accepts financial and economic data, produces financial and

economic statements and graphical displays and calculates measures of performance. Supplementary

modules assist in the analytical process.

https://en.wikipedia.org/wiki/Feasibility_study#cite_note-SE_and_Analysis-11
https://en.wikipedia.org/wiki/Feasibility_study#cite_note-12

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

Cost-benefit and value-added methods of economic analysis developed by UNIDO are included in the

program and the methods of major international development institutions are accommodated. The

program is applicable for the analysis of investment in new projects and expansion or rehabilitation of
existing enterprises as, e.g., in the case of re privatization projects. For joint ventures, the financial

perspective of each partner or class of shareholder can be developed. Analysis can be performed under a

variety of assumptions concerning inflation, currency revaluation and price escalations.

UNIT-2

 What is Data Flow Diagram (DFD)? How to Draw DFD?

What is a data flow diagram (DFD)?

A picture is worth a thousand words. A Data Flow Diagram (DFD) is a traditional way to visualize the

information flows within a system. A neat and clear DFD can depict a good amount of the system

requirements graphically. It can be manual, automated, or a combination of both.

It shows how information enters and leaves the system, what changes the information and where

information is stored. The purpose of a DFD is to show the scope and boundaries of a system as a

whole. It may be used as a communications tool between a systems analyst and any person who plays a

part in the system that acts as the starting point for redesigning a system.

It is usually beginning with a context diagram as level 0 of the DFD diagram, a simple representation of

the whole system. To elaborate further from that, we drill down to a level 1 diagram with lower-level

functions decomposed from the major functions of the system. This could continue to evolve to become a

level 2 diagram when further analysis is required.

Progression to levels 3, 4 and so on is possible but anything beyond level 3 is not very common. Please

bear in mind that the level of detail for decomposing a particular function depending on the complexity

that function.

DFD Diagram Notations

Now we'd like to briefly introduce to you a few diagram notations which you'll see in the tutorial

below.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

External Entity

An external entity can represent a human, system or subsystem. It is where certain data comes

from or goes to. It is external to the system we study, in terms of the business process. For this reason,

people used to draw external entities on the edge of a diagram.

Process

A process is a business activity or function where the manipulation and transformation of data take

place. A process can be decomposed to a finer level of details, for representing how data is being

processed within the process.

Data Store

A data store represents the storage of persistent data required and/or produced by the process. Here

are some examples of data stores: membership forms, database tables, etc.

Data Flow

A data flow represents the flow of information, with its direction represented by an arrowhead that

shows at the end(s) of flow connector.

What will we do in this tutorial?

In this tutorial, we will show you how to draw a context diagram, along with a level 1 diagram.

Note: The software we are using here is Visual Paradigm. You are welcome to download a free

30-day evaluation copy of Visual Paradigm to walk through the example below. No registration,

email address or obligation is required.

How to Draw Context Level DFD?

https://www.visual-paradigm.com/
https://www.visual-paradigm.com/download/

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

1. To create new DFD, select Diagram > New from the toolbar.
2. In the New Diagram window, select Data Flow Diagram and click Next.
3. Enter Context as diagram name and click OK to confirm.
4. We'll now draw the first process. From the Diagram Toolbar, drag Process onto the

diagram. Name the new process System.

5. Next, let's create an external entity. Place your mouse pointer over System. Press

and drag out the Resource Catalog button at the top right.

6. Release the mouse button and select Bidirectional Data Flow -> External Entity from

Resource Catalog.

7. Name the new external entity Customer.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

 How to Draw Level 1 DFD?

1. Instead of creating another diagram from scratch, we will decompose the

System process to form a new DFD. Right-click on System and

8. Now we'll model the database accessed by the system. Use the Resource Catalog
to create a Data Store from System, with bidirectional data flow in between.

9. Name the new data store Inventory.

10. Create two more data stores, Customer and Transaction, as shown below. We have just
completed the Context diagram.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

1.

Wiring with connection lines for data flows

The remaining steps in this section are about connecting the model elements in the diagram. For

example, Customer provides order information when placing an order for processing.

select Decompose from the popup menu.

2. The data stores and/or external entities connected to the selected process (System)

would be referred to in the level 1 DFD. So when you are prompted to add them to
the new diagram, click Yes to confirm.
Note: The new DFD should look very similar to the Context diagram initially. Every
element should remain unchanged, except that the System process (from which this new
DFD decomposes) is now gone and replaced by a blank space (to be elaborated).

3. Rename the new DFD. Right-click on its background and select Rename In the
diagram's name box, enter Level 1 DFD and press ENTER.

4. Create three processes (Process Order, Ship Good, Issue Receipt) in the center as
shown below. That is the old spot for the System process and we place them there
to elaborate System.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

1. Place your mouse pointer over Customer. Drag out the Resource Catalog icon and
release your mouse button on Process Order.

2. Select Data Flow from Resource Catalog.

3. Enter order information has the caption of flow.

4. Meanwhile, the Process Order process also receives customer information from the

database to process the order.

Use the Resource Catalog to create a data flow from Customer to Process Order.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

Optional: You can label the data flow "customer information" if you like. But since this data
flow is quite self-explanatory visually, we are going to omit it here.

5. By combining the order information from Customer (external entity) and the customer

information from Customer (data store), Process Order (process) then creates a

transaction record in the database. Create a data flow from Process Order to Transaction.

Drawing Tips:
To rearrange a connection line, place your mouse pointer over where you want to add a pivot
point to it. You'll then see a bubble at your mouse pointer. Press and drag it to the position
desired.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

Up to this point, your diagram should look something like this.

6. Once a transaction is stored, the shipping process follows. Therefore, create a data flow

from Process Order (process) to Ship Good (process).

7. Ship Good needs to read the transaction information (i.e. The order number to pack the

right product for delivery. Create a data flow from Transaction (data store) to Ship

Good (process).

Note: If there is a lack of space, feel free to move the shapes around to make room.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

8. Ship Good also needs to read the customer information for his/her shipping address.
Create a data flow from Customer (data store) to Ship Good (process).

9. Ship Good then updates the Inventory database to reflect the goods shipped. Create a data

flow from Ship Good (process) to Inventory (data store). Name it updated product

record.

10. Once the order arrives in the customer's hands, the Issue Receipt process begins. In it, a

receipt is prepared based on the transaction record stored in the database. So let's create a

data flow from Transaction (data store) to Issue Receipt (process).

11. Then a receipt is issued to the customer. Let's create a data flow from Issue

Receipt (process) to Customer (external entity). Name the data flow receipt.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

You have just finished drawing the level 1 diagram which should look something like this.

How to Improve a DFD's Readability?

The completed diagram above looks a bit rigid and busy. In this section, we are going to make some

changes to the connectors to increase readability.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

1. Right-click on the diagram (Level 1 DFD) and select Connectors > Curve. Connectors
in the diagram are now in curve lines.

2. Move the shapes around so that the diagram looks less crowded.

Forms Design

Both forms and reports are the product of input and output design and are business document consisting

of specified data. The main difference is that forms provide fields for data input but reports are purely

used for reading. For example, order forms, employment and credit application, etc.

 During form designing, the designers should know −

o who will use them

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

o where would they be delivered

o the purpose of the form or report

 During form design, automated design tools enhance the developer’s ability to prototype

forms and reports and present them to end users for evaluation.

Objectives of Good Form Design

A good form design is necessary to ensure the following −

 To keep the screen simple by giving proper sequence, information, and clear captions.

 To meet the intended purpose by using appropriate forms.

 To ensure the completion of form with accuracy.

 To keep the forms attractive by using icons, inverse video, or blinking cursors etc.

 To facilitate navigation.

Types of Forms

Flat Forms

 It is a single copy form prepared manually or by a machine and printed on a paper. For

additional copies of the original, carbon papers are inserted between copies.

 It is a simplest and inexpensive form to design, print, and reproduce, which uses less

volume.

Unit Set/Snap out Forms

 These are papers with one-time carbons interleaved into unit sets for either handwritten

or machine use.

 Carbons may be either blue or black, standard grade medium intensity. Generally, blue

carbons are best for handwritten forms while black carbons are best for machine use.

Continuous strip/Fanfold Forms

 These are multiple unit forms joined in a continuous strip with perforations between each

pair of forms.

 It is a less expensive method for large volume use.

No Carbon Required (NCR) Paper

 They use carbonless papers which have two chemical coatings (capsules), one on the

face and the other on the back of a sheet of paper.

 When pressure is applied, the two capsules interact and create an image.

Screen Design

User interface is the front-end application view to which user interacts in order to use the software. User

can manipulate and control the software as well as hardware by means of user interface. Today, user
interface is found at almost every place where digital technology exists, right from computers, mobile

phones, cars, music players, airplanes, ships etc.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

User interface is part of software and is designed such a way that it is expected to provide the user
insight of the software. UI provides fundamental platform for human-computer interaction.

UI can be graphical, text-based, audio-video based, depending upon the underlying hardware and
software combination. UI can be hardware or software or a combination of both.

The software becomes more popular if its user interface is:

 Attractive

 Simple to use

 Responsive in short time

 Clear to understand

 Consistent on all interfacing screens

UI is broadly divided into two categories:

 Command Line Interface

 Graphical User Interface

Command Line Interface (CLI)

CLI has been a great tool of interaction with computers until the video display monitors came into
existence. CLI is first choice of many technical users and programmers. CLI is minimum interface a

software can provide to its users.

CLI provides a command prompt, the place where the user types the command and feeds to the system.
The user needs to remember the syntax of command and its use. Earlier CLI were not programmed to

handle the user errors effectively.

A command is a text-based reference to set of instructions, which are expected to be executed by the
system. There are methods like macros, scripts that make it easy for the user to operate.

CLI uses less amount of computer resource as compared to GUI.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

CLI Elements

A text-based command line interface can have the following elements:

 Command Prompt - It is text-based notifier that is mostly shows the context in which

the user is working. It is generated by the software system.

 Cursor - It is a small horizontal line or a vertical bar of the height of line, to represent

position of character while typing. Cursor is mostly found in blinking state. It moves as

the user writes or deletes something.

 Command - A command is an executable instruction. It may have one or more

parameters. Output on command execution is shown inline on the screen. When output

is produced, command prompt is displayed on the next line.

Graphical User Interface

Graphical User Interface provides the user graphical means to interact with the system. GUI can be

combination of both hardware and software. Using GUI, user interprets the software.

Typically, GUI is more resource consuming than that of CLI. With advancing technology, the
programmers and designers create complex GUI designs that work with more efficiency, accuracy and

speed.

GUI Elements

GUI provides a set of components to interact with software or hardware.

Every graphical component provides a way to work with the system. A GUI system has following

elements such as:

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

 Window - An area where contents of application are displayed. Contents in a window

can be displayed in the form of icons or lists, if the window represents file structure. It is

easier for a user to navigate in the file system in an exploring window. Windows can be

minimized, resized or maximized to the size of screen. They can be moved anywhere on

the screen. A window may contain another window of the same application, called child

window.

 Tabs - If an application allows executing multiple instances of itself, they appear on the

screen as separate windows. Tabbed Document Interface has come up to open

multiple documents in the same window. This interface also helps in viewing preference

panel in application. All modern web-browsers use this feature.

 Menu - Menu is an array of standard commands, grouped together and placed at a

visible place (usually top) inside the application window. The menu can be programmed

to appear or hide on mouse clicks.

 Icon - An icon is small picture representing an associated application. When these icons

are clicked or double clicked, the application window is opened. Icon displays

application and programs installed on a system in the form of small pictures.

 Cursor - Interacting devices such as mouse, touch pad, digital pen are represented in

GUI as cursors. On screen cursor follows the instructions from hardware in almost real-

time. Cursors are also named pointers in GUI systems. They are used to select menus,

windows and other application features.

Application specific GUI components

A GUI of an application contains one or more of the listed GUI elements:

 Application Window - Most application windows uses the constructs supplied by

operating systems but many use their own customer created windows to contain the

contents of application.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

 Dialogue Box - It is a child window that contains message for the user and request for

some action to be taken. For Example: Application generate a dialogue to get

confirmation from user to delete a file.

 Text-Box - Provides an area for user to type and enter text-based data.

 Buttons - They imitate real life buttons and are used to submit inputs to the software.

 Radio-button - Displays available options for selection. Only one can be selected among

all offered.

 Check-box - Functions similar to list-box. When an option is selected, the box is marked

as checked. Multiple options represented by check boxes can be selected.

 List-box - Provides list of available items for selection. More than one item can be

selected.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

Other impressive GUI components are:

 Sliders

 Combo-box

 Data-grid

 Drop-down list

User Interface Design Activities

There are a number of activities performed for designing user interface. The process of GUI design and

implementation is alike SDLC. Any model can be used for GUI implementation among Waterfall,

Iterative or Spiral Model.

A model used for GUI design and development should fulfill these GUI specific steps.

 GUI Requirement Gathering - The designers may like to have list of all functional and

non-functional requirements of GUI. This can be taken from user and their existing

software solution.

 User Analysis - The designer studies who is going to use the software GUI. The target

audience matters as the design details change according to the knowledge and

competency level of the user. If user is technical savvy, advanced and complex GUI can

be incorporated. For a novice user, more information is included on how-to of software.

 Task Analysis - Designers have to analyze what task is to be done by the software

solution. Here in GUI, it does not matter how it will be done. Tasks can be represented

in hierarchical manner taking one major task and dividing it further into smaller sub-

tasks. Tasks provide goals for GUI presentation. Flow of information among sub-tasks

determines the flow of GUI contents in the software.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

 GUI Design & implementation - Designers after having information about

requirements, tasks and user environment, design the GUI and implements into code and

embed the GUI with working or dummy software in the background. It is then self-

tested by the developers.

 Testing - GUI testing can be done in various ways. Organization can have in-house

inspection, direct involvement of users and release of beta version are few of them.

Testing may include usability, compatibility, user acceptance etc.

GUI Implementation Tools

There are several tools available using which the designers can create entire GUI on a mouse click.
Some tools can be embedded into the software environment (IDE).

GUI implementation tools provide powerful array of GUI controls. For software customization,
designers can change the code accordingly.

There are different segments of GUI tools according to their different use and platform. Example

Mobile GUI, Computer GUI, Touch-Screen GUI etc. Here is a list of few tools which come

handy to build GUI:

 FLUID

 AppInventor (Android)

 LucidChart

 Wavemaker

 Visual Studio

User Interface Golden rules

The following rules are mentioned to be the golden rules for GUI design, described by Shneiderman and

Plaisant in their book (Designing the User Interface).

 Strive for consistency - Consistent sequences of actions should be required in similar

situations. Identical terminology should be used in prompts, menus, and help screens.

Consistent commands should be employed throughout.

 Enable frequent users to use short-cuts - The user’s desire to reduce the number of

interactions increases with the frequency of use. Abbreviations, function keys, hidden

commands, and macro facilities are very helpful to an expert user.

 Offer informative feedback - For every operator action, there should be some system

feedback. For frequent and minor actions, the response must be modest, while for

infrequent and major actions, the response must be more substantial.

 Design dialog to yield closure - Sequences of actions should be organized into groups

with a beginning, middle, and end. The informative feedback at the completion of a

group of actions gives the operators the satisfaction of accomplishment, a sense of relief,

the signal to drop contingency plans and options from their minds, and this indicates that

the way ahead is clear to prepare for the next group of actions.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

 Offer simple error handling - As much as possible, design the system so the user will

not make a serious error. If an error is made, the system should be able to detect it and

offer simple, comprehensible mechanisms for handling the error.

 Permit easy reversal of actions - This feature relieves anxiety, since the user knows that

errors can be undone. Easy reversal of actions encourages exploration of unfamiliar

options. The units of reversibility may be a single action, a data entry, or a complete

group of actions.

 Support internal locus of control - Experienced operators strongly desire the sense that

they are in charge of the system and that the system responds to their actions. Design the

system to make users the initiators of actions rather than the responders.

 Reduce short-term memory load - The limitation of human information processing in

short-term memory requires the displays to be kept simple, multiple page displays be

consolidated, window-motion frequency be reduced, and sufficient training time be

allotted for codes, mnemonics, and sequences of actions.

Report Design

Definition of Report: A business report is a document that conveys specific information about your

business to other individuals those can be investors, employees, managers or other superior. Report

Writing Software:It consist of programs that produce both periodic reports and special reports.

 Periodic Reports:They are routine reports on a scheduled time(periodically). These

reports are issued weekly, quarterly, or annually. For example, feedback.

 Specific Reports: They are type of unscheduled report that may be requested by

managers.

Steps of writing a Report:

1. Define the problem.

2. Gather the necessary information.

3. Analyse the information.

4. Organize the information.

5. Write report.

Principles of writing a Report:

1. One should highlight the important information- managers should not have to waste their

time searching the information they need.

2. Report should be as simple as possible- should be in simple format, consistency of

language should be maintained, free from jargon etc.

3. Backup detail should be available.

Presentation Modes:

1. Graphic Form: Used when the information is not quantitative or an overview is needed,

pictures can be used.

2. Tabular Form: Frequently used, which tabulates the production figures of one department.

3. Narrative Form: Used when the information is subjective and quantitative.

Management by Exception:
1. Prepare the report only when exceptions occur: These report printed only when

employees work overtime, each entry on the report is an exception.

2. By showing variance from normal: Here the reports contain the details of the comparisons

of the actual activity with the planned activity.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

3. Grouping the exception together: The exceptions of special interest for the manager can
be grouped and highlighted for quick attention.

4. Highlighting exception by maintaining a certain sequence: It is possible to sort report

records into either in an ascending or descending sequence based on one or more key fields.

Importance of writing a Report:

1. Providing a deeper insight.

2. Highlights the specific problem of a business.

3. Help adopt right marketing strategy.

4. Helps in decision making and problem solving.

Structure chart

A structure chart (SC) in software engineering and organizational theory is a chart which shows the

breakdown of a system to its lowest manageable levels.[2] They are used in structured programming to
arrange program modules into a tree. Each module is represented by a box, which contains the module's
name. The tree structure visualizes the relationships between modules.

A structure chart is a top-down modular design tool, constructed of squares representing the different
modules in the system, and lines that connect them. The lines represent the connection and or ownership

between activities and subactivities as they are used in organization charts

In structured analysis structure charts, according to Wolber (2009), "are used to specify the high- level

design, or architecture, of a computer program. As a design tool, they aid the programmer in dividing and

conquering a large software problem, that is, recursively breaking a problem down into parts that are
small enough to be understood by a human brain. The process is

called top-down design, or functional decomposition. Programmers use a structure chart to build a
program in a manner similar to how an architect uses a blueprint to build a house. In the design stage, the
chart is drawn and used as a way for the client and the various software designers to communicate.
During the actual building of the program (implementation), the chart is continually referred to as "the

master-plan".[5]

A structure chart depicts[2]

 the size and complexity of the system, and

 number of readily identifiable functions and modules within each function and

 whether each identifiable function is a manageable entity or should be broken down into

smaller components.

A structure chart is also used to diagram associated elements that comprise a run stream or thread. It is

often developed as a hierarchical diagram, but other representations are allowable. The representation
must describe the breakdown of the configuration system into subsystems and the lowest manageable
level. An accurate and complete structure chart is the key to the determination of the configuration items
(CI), and a visual representation of the configuration system and the internal interfaces among its

CIs(define CI clearly). During the configuration control process, the structure chart is used to identify CIs and

their associated artifacts that a proposed change may impact.[2]

 Structure chart construction

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Organizational_theory
https://en.wikipedia.org/wiki/Chart
https://en.wikipedia.org/wiki/Structure_chart#cite_note-IRT-2
https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Top-down_design
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Organization_chart
https://en.wikipedia.org/wiki/Structured_analysis
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Top-down_design
https://en.wikipedia.org/wiki/Functional_decomposition
https://en.wikipedia.org/wiki/Structure_chart#cite_note-Wol-5
https://en.wikipedia.org/wiki/Structure_chart#cite_note-IRT-2
https://en.wikipedia.org/wiki/Diagram
https://en.wikipedia.org/w/index.php?title=Hierarchical_diagram&action=edit&redlink=1
https://en.wikipedia.org/wiki/Configuration_system
https://en.wikipedia.org/wiki/Subsystem
https://en.wikipedia.org/wiki/Structure_chart#cite_note-IRT-2

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

According to Wolber (2009), "a structure chart can be developed starting with the creating of a
structure, which places the root of an upside-down tree which forms the structure chart. The next step is to
conceptualize the main sub-tasks that must be performed by the program to solve the problem. Next, the
programmer focuses on each sub-task individually, and conceptualizes how each can be broken down into
even smaller tasks. Eventually, the program is broken down to a point where the leaves of the tree

represent simple methods that can be coded with just a few program statements".[5]

In practice, see figure, first it is checked if a structure chart has been developed already. If so an expert

needs to review it to ensure it represents the current structure and if not, updates the chart where needed.

Equipment Specification and Selection

The software requirements are description of features and functionalities of the target system.

Requirements convey the expectations of users from the software product. The requirements can be

obvious or hidden, known or unknown, expected or unexpected from client’s point of view.

Requirement Engineering

The process to gather the software requirements from client, analyze and document them is known as

requirement engineering.

A process flow diagram describing the construction of a structure chart by a so-called Subject Matter

Experts (SME)

https://en.wikipedia.org/wiki/Structure_chart#cite_note-Wol-5

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

The goal of requirement engineering is to develop and maintain sophisticated and descriptive ‘System

Requirements Specification’ document.

Requirement Engineering Process

It is a four step process, which includes:

 Feasibility Study

 Requirement Gathering

 Software Requirement Specification

 Software Requirement Validation

Let us see the process briefly –

Feasibility study

When the client approaches the organization for getting the desired product developed, it comes
up with rough idea about what all functions the software must perform and which all features are

expected from the software.

Referencing to this information, the analysts does a detailed study about whether the desired system and

its functionality are feasible to develop.

This feasibility study is focused towards goal of the organization. This study analyzes whether the

software product can be practically materialized in terms of implementation, contribution of project to

organization, cost constraints and as per values and objectives of the organization. It explores technical
aspects of the project and product such as usability, maintainability, productivity and integration ability.

The output of this phase should be a feasibility study report that should contain adequate comments and

recommendations for management about whether or not the project should be undertaken.

Requirement Gathering

If the feasibility report is positive towards undertaking the project, next phase starts with gathering

requirements from the user. Analysts and engineers communicate with the client and end-users to know

their ideas on what the software should provide and which features they want the software to include.

Software Requirement Specification

SRS is a document created by system analyst after the requirements are collected from various

stakeholders.

SRS defines how the intended software will interact with hardware, external interfaces, speed of

operation, response time of system, portability of software across various platforms, maintainability,

speed of recovery after crashing, Security, Quality, Limitations etc.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

The requirements received from client are written in natural language. It is the responsibility of system

analyst to document the requirements in technical language so that they can be comprehended and useful

by the software development team.

SRS should come up with following features:

 User Requirements are expressed in natural language.

 Technical requirements are expressed in structured language, which is used inside the

organization.

 Design description should be written in Pseudo code.

 Format of Forms and GUI screen prints.

 Conditional and mathematical notations for DFDs etc.

Software Requirement Validation

After requirement specifications are developed, the requirements mentioned in this document are

validated. User might ask for illegal, impractical solution or experts may interpret the requirements

incorrectly. This results in huge increase in cost if not nipped in the bud. Requirements can be checked

against following conditions –

 If they can be practically implemented

 If they are valid and as per functionality and domain of software

 If there are any ambiguities

 If they are complete

 If they can be demonstrated

Requirement Elicitation Process

Requirement elicitation process can be depicted using the folloiwng diagram:

 Requirements gathering – The developers discuss with the client and end users and know their

expectations from the software.

 Organizing Requirements – The developers prioritize and arrange the requirements in order of

importance, urgency and convenience.

 Negotiation & discussion – If requirements are ambiguous or there are some conflicts in

requirements of various stakeholders, if they are, it is then negotiated and discussed with

stakeholders. Requirements may then be prioritized and reasonably compromised.

The requirements come from various stakeholders. To remove the ambiguity and conflicts, they are

discussed for clarity and correctness. Unrealistic requirements are compromised reasonably.

 Documentation – All formal & informal, functional and non-functional requirements are

documented and made available for next phase processing.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

Requirement Elicitation Techniques

Requirements Elicitation is the process to find out the requirements for an intended software system by

communicating with client, end users, system users and others who have a stake in the software system

development.

There are various ways to discover requirements

Interviews

Interviews are strong medium to collect requirements. Organization may conduct several types
of interviews such as:

 Structured (closed) interviews, where every single information to gather is decided in advance,
they follow pattern and matter of discussion firmly.

 Non-structured (open) interviews, where information to gather is not decided in advance, more

flexible and less biased.

 Oral interviews

 Written interviews

 One-to-one interviews which are held between two persons across the table.

 Group interviews which are held between groups of participants. They help to uncover any

missing requirement as numerous people are involved.

Surveys

Organization may conduct surveys among various stakeholders by querying about their expectation and

requirements from the upcoming system.

Questionnaires

A document with pre-defined set of objective questions and respective options is handed over to all

stakeholders to answer, which are collected and compiled.

A shortcoming of this technique is, if an option for some issue is not mentioned in the questionnaire, the

issue might be left unattended.

Task analysis

Team of engineers and developers may analyze the operation for which the new system is required. If the

client already has some software to perform certain operation, it is studied and requirements of proposed

system are collected.

Domain Analysis

Every software falls into some domain category. The expert people in the domain can be a great help to

analyze general and specific requirements.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

Brainstorming

An informal debate is held among various stakeholders and all their inputs are recorded for further

requirements analysis.

Prototyping

Prototyping is building user interface without adding detail functionality for user to interpret the features

of intended software product. It helps giving better idea of requirements. If there is no software installed
at client’s end for developer’s reference and the client is not aware of its own requirements, the developer

creates a prototype based on initially mentioned requirements. The prototype is shown to the client and

the feedback is noted. The client feedback serves as an input for requirement gathering.

Observation

Team of experts visit the client’s organization or workplace. They observe the actual working of the

existing installed systems. They observe the workflow at client’s end and how execution problems are

dealt. The team itself draws some conclusions which aid to form requirements expected from the

software.

Software Requirements Characteristics

Gathering software requirements is the foundation of the entire software development project. Hence they

must be clear, correct and well-defined.

A complete Software Requirement Specifications must be:

 Clear

 Correct

 Consistent

 Coherent

 Comprehensible

 Modifiable

 Verifiable

 Prioritized

 Unambiguous

 Traceable

 Credible source

Software Requirements

We should try to understand what sort of requirements may arise in the requirement elicitation phase and

what kinds of requirements are expected from the software system.

Broadly software requirements should be categorized in two categories: Functional

Requirements

Requirements, which are related to functional aspect of software fall into this category.

They define functions and functionality within and from the software system.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

EXAMPLES –

 Search option given to user to search from various invoices.

 User should be able to mail any report to management.

 Users can be divided into groups and groups can be given separate rights.

 Should comply business rules and administrative functions.

 Software is developed keeping downward compatibility intact.

Non-Functional Requirements

Requirements, which are not related to functional aspect of software, fall into this category. They are

implicit or expected characteristics of software, which users make assumption of.

Non-functional requirements include –

 Security

 Logging

 Storage

 Configuration

 Performance

 Cost

 Interoperability

 Flexibility

 Disaster recovery

 Accessibility

Requirements are categorized logically as

 Must Have : Software cannot be said operational without them.

 Should have : Enhancing the functionality of software.

 Could have : Software can still properly function with these requirements.

 Wish list : These requirements do not map to any objectives of software.

While developing software, ‘Must have’ must be implemented, ‘Should have’ is a matter of debate with

stakeholders and negation, whereas ‘could have’ and ‘wish list’ can be kept for software updates.

User Interface requirements

UI is an important part of any software or hardware or hybrid system. A software is widely accepted if it

is –

 easy to operate

 quick in response

 effectively handling operational errors

 providing simple yet consistent user interface

User acceptance majorly depends upon how user can use the software. UI is the only way for users to
perceive the system. A well performing software system must also be equipped with attractive, clear,

consistent and responsive user interface. Otherwise the functionalities of

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

software system can not be used in convenient way. A system is said be good if it provides means to use

it efficiently. User interface requirements are briefly mentioned below –

 Content presentation

 Easy Navigation

 Simple interface

 Responsive

 Consistent UI elements

 Feedback mechanism

 Default settings

 Purposeful layout

 Strategical use of color and texture.

 Provide help information

 User centric approach

 Group based view settings.

Software System Analyst

System analyst in an IT organization is a person, who analyzes the requirement of proposed system and
ensures that requirements are conceived and documented properly & correctly. Role of an analyst starts

during Software Analysis Phase of SDLC. It is the responsibility of analyst to make sure that the

developed software meets the requirements of the client.

System Analysts have the following responsibilities:

 Analyzing and understanding requirements of intended software

 Understanding how the project will contribute in the organization objectives

 Identify sources of requirement

 Validation of requirement

 Develop and implement requirement management plan

 Documentation of business, technical, process and product requirements

 Coordination with clients to prioritize requirements and remove and ambiguity

 Finalizing acceptance criteria with client and other stakeholders

Software Metrics and Measures

Software Measures can be understood as a process of quantifying and symbolizing various attributes and

aspects of software.

Software Metrics provide measures for various aspects of software process and software product.

Software measures are fundamental requirement of software engineering. They not only help to control

the software development process but also aid to keep quality of ultimate product excellent.

According to Tom DeMarco, a (Software Engineer), “You cannot control what you cannot measure.” By

his saying, it is very clear how important software measures are.

Let us see some software metrics:

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

 Size Metrics – LOC (Lines of Code), mostly calculated in thousands of delivered source code

lines, denoted as KLOC.

Function Point Count is measure of the functionality provided by the software. Function Point count

defines the size of functional aspect of software.

 Complexity Metrics – McCabe’s Cyclomatic complexity quantifies the upper bound of the

number of independent paths in a program, which is perceived as complexity of the program or

its modules. It is represented in terms of graph theory concepts by using control flow graph.

 Quality Metrics – Defects, their types and causes, consequence, intensity of severity and their

implications define the quality of product.

The number of defects found in development process and number of defects reported by the client after

the product is installed or delivered at client-end, define quality of product.

 Process Metrics – In various phases of SDLC, the methods and tools used, the company

standards and the performance of development are software process metrics.

 Resource Metrics – Effort, time and various resources used, represents metrics for resource

measurement.

Personnel Estimates

Staffing level estimation

Once the effort required to develop a software has been determined, it is necessary to determine

the staffing requirement for the project. Putnam first studied the problem of what should be a

proper staffing pattern for software projects. He extended the work of Norden who had earlier

investigated the staffing pattern of research and development (R&D) type of projects. In order to

appreciate the staffing pattern of software projects, Norden’s and Putnam’s results must be

understood.

Norden’s Work

Norden studied the staffing patterns of several R & D projects. He found that the staffing pattern

can be approximated by the Rayleigh distribution curve (as shown in fig. 11.6). Norden

represented the Rayleigh curve by the following equation:

E = K/t²d * t * e-t² / 2 t²d

Where E is the effort required at time t. E is an indication of the number of engineers (or the

staffing level) at any particular time during the duration of the project, K is the area under the

curve, and td is the time at which the curve attains its maximum value. It must

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

be remembered that the results of Norden are applicable to general R & D projects and were
not meant to model the staffing pattern of software development projects.

Effort per Unit Time

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

d

td

Time

Fig. 11.6: Rayleigh curve

Putnam’s Work

Putnam studied the problem of staffing of software projects and found that the software

development has characteristics very similar to other R & D projects studied by Norden and that

the Rayleigh-Norden curve can be used to relate the number of delivered lines of code to the

effort and the time required to develop the project. By analyzing a large number of army projects,

Putnam derived the following expression:

L = Ck K1/3t 4/3

The various terms of this expression are as follows:

• K is the total effort expended (in PM) in the product development and L is the

product size in KLOC.

• td corresponds to the time of system and integration testing. Therefore, td can be

approximately considered as the time required to develop the software.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

• Ck is the state of technology constant and reflects constraints that impede the
progress of the programmer. Typical values of Ck = 2 for poor development
environment (no methodology, poor documentation, and review, etc.), Ck = 8 for
good software development environment (software engineering principles are
adhered to), Ck = 11 for an excellent environment (in addition to following
software engineering principles, automated tools and techniques are used). The
exact value of Ck for a specific project can be computed from the historical data
of the organization developing it.

Putnam suggested that optimal staff build-up on a project should follow the Rayleigh curve. Only

a small number of engineers are needed at the beginning of a project to carry out planning and

specification tasks. As the project progresses and more detailed work is required, the number of

engineers reaches a peak. After implementation and unit testing, the number of project staff falls.

However, the staff build-up should not be carried out in large installments. The team

size should either be increased or decreased slowly whenever required to match the Rayleigh-

Norden curve. Experience shows that a very rapid build up of project staff any time during the

project development correlates with schedule slippage.

It should be clear that a constant level of manpower through out the project duration

would lead to wastage of effort and increase the time and effort required to develop the product.

If a constant number of engineers are used over all the phases of a project, some phases would be

overstaffed and the other phases would be understaffed causing inefficient use of manpower,

leading to schedule slippage and increase in cost.

Effect of schedule change on cost

By analyzing a large number of army projects, Putnam derived the following expression:

L = CkK1/3td4/3

Where, K is the total effort expended (in PM) in the product development and L is the product
size in KLOC, td corresponds to the time of system and integration testing and Ck is the state of
technology constant and reflects constraints that impede the progress of the programmer

Now by using the above expression it is obtained that,

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

K = L3/C 3t 4

k d

Or,

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

d

k

K = C/t 4

For the same product size, C = L3 / C 3 is a constant.

or, K1/K2 = td2
4/t 4

d1

or,
4

K ∝ 1/td

or, cost ∝ 1/td

(as project development effort is equally proportional to project development cost)

From the above expression, it can be easily observed that when the schedule of a project is

compressed, the required development effort as well as project development cost increases in

proportion to the fourth power of the degree of compression. It means that a relatively small

compression in delivery schedule can result in substantial penalty of human effort as well as

development cost. For example, if the estimated development time is 1 year, then in order to

develop the product in 6 months, the total effort required to develop the product (and hence the

project cost) increases 16 times.

I-O Design

Input Design

In an information system, input is the raw data that is processed to produce output. During the input
design, the developers must consider the input devices such as PC, MICR, OMR, etc.

Therefore, the quality of system input determines the quality of system output. Welldesigned input forms

and screens have following properties −

 It should serve specific purpose effectively such as storing, recording, and retrieving the

information.

 It ensures proper completion with accuracy.

 It should be easy to fill and straightforward.

 It should focus on user’s attention, consistency, and simplicity.

 All these objectives are obtained using the knowledge of basic design principles

regarding −

o What are the inputs needed for the system?

o How end users respond to different elements of forms and screens.

Objectives for Input Design

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

The objectives of input design are −

 To design data entry and input procedures

 To reduce input volume

 To design source documents for data capture or devise other data capture methods

 To design input data records, data entry screens, user interface screens, etc.

 To use validation checks and develop effective input controls.

Data Input Methods

It is important to design appropriate data input methods to prevent errors while entering data. These

methods depend on whether the data is entered by customers in forms manually and later entered by data
entry operators, or data is directly entered by users on the PCs.

A system should prevent user from making mistakes by −

 Clear form design by leaving enough space for writing legibly.

 Clear instructions to fill form.

 Clear form design.

 Reducing key strokes.

 Immediate error feedback.

Some of the popular data input methods are −

 Batch input method (Offline data input method)

 Online data input method

 Computer readable forms

 Interactive data input

Input Integrity Controls

Input integrity controls include a number of methods to eliminate common input errors by end- users.

They also include checks on the value of individual fields; both for format and the completeness of all

inputs.

Audit trails for data entry and other system operations are created using transaction logs which gives a

record of all changes introduced in the database to provide security and means of recovery in case of any

failure.

Output Design

The design of output is the most important task of any system. During output design, developers identify

the type of outputs needed, and consider the necessary output controls and prototype report layouts.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

Objectives of Output Design

The objectives of input design are −

 To develop output design that serves the intended purpose and eliminates the production

of unwanted output.

 To develop the output design that meets the end users requirements.

 To deliver the appropriate quantity of output.

 To form the output in appropriate format and direct it to the right person.

 To make the output available on time for making good decisions.

Let us now go through various types of outputs −

External Outputs

Manufacturers create and design external outputs for printers. External outputs enable the system to

leave the trigger actions on the part of their recipients or confirm actions to their recipients.

Some of the external outputs are designed as turnaround outputs, which are implemented as a form and

re-enter the system as an input.

Internal outputs

Internal outputs are present inside the system, and used by end-users and managers. They support the

management in decision making and reporting.

There are three types of reports produced by management information −

 Detailed Reports − They contain present information which has almost no filtering or

restriction generated to assist management planning and control.

 Summary Reports − They contain trends and potential problems which are categorized

and summarized that are generated for managers who do not want details.

 Exception Reports − They contain exceptions, filtered data to some condition or

standard before presenting it to the manager, as information.

Output Integrity Controls

Output integrity controls include routing codes to identify the receiving system, and verification

messages to confirm successful receipt of messages that are handled by network protocol.

Printed or screen-format reports should include a date/time for report printing and the data. Multipage

reports contain report title or description, and pagination. Pre-printed forms usually include a version
number and effective date.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

UNIT-3

Data Dictionaries

A data dictionary is a file or a set of files that includes a database's metadata. The data dictionary hold
records about other objects in the database, such as data ownership, data relationships to other objects,

and other data. The data dictionary is an essential component of any relational database. Ironically,

because of its importance, it is invisible to most database users. Typically, only database administrators

interact with the data dictionary.

The data dictionary, in general, includes information about the following:

o Name of the data item

o Aliases

o Description/purpose

o Related data items

o Range of values

o Data structure definition/Forms

The name of the data item is self-explanatory.

Aliases include other names by which this data item is called DEO for Data Entry Operator and DR for Deput Registrar.

Description/purpose is a textual description of what the data item is used for or why it exists.

Related data items capture relationships between data items e.g., total_marks must always equal to

internal_marks plus external_marks.

Range of values records all possible values, e.g. total marks must be positive and between 0 to 100. Data

structure Forms: Data flows capture the name of processes that generate or receive the data items. If the data

item is primitive, then data structure form captures the physical structures of the data item.

If the data is itself a data aggregate, then data structure form capture the composition of the data items in term other

data items.

The mathematical operators used within the data dictionary are defined in the table:

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

Notations Meaning

x=a+b x includes of data elements a and b.

x=[a/b] x includes of either data elements a or b.

x=a x includes of optimal data elements a.

x=y[a] x includes of y or more occurrences of data element a

x=[a]z x includes of z or fewer occurrences of data element a

x=y[a]z x includes of some occurrences of data element a which are between y and z.

Decision table

A decision table is a good way to deal with different combination inputs with their associated outputs.

It is a black box test design technique to determine the test scenarios for complex business logic.

What is Decision Table in Software Testing?

The decision table is a software testing technique which is used for testing the system behavior for

different input combinations. This is a systematic approach where the different input combinations and

their corresponding system behavior are captured in a tabular form.

This table helps you deal with different combination inputs with their associated outputs. Also, it is

known as the cause-effect table because of an associated logical diagramming technique called cause-

effect graphing that is basically used to derive the decision table.

Why is Decision Table Important?

A decision table is an outstanding technique used for testing and requirements management. Some of the

reasons why the decision table is important include:

Decision tables are very much helpful in test design technique.

https://www.edureka.co/blog/what-is-software-testing/

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

 It helps testers to search the effects of combinations of different inputs and other software

states that implement business rules.

 It provides a regular way of stating complex business rules which benefits the developers

as well as the testers.

 It assists in the development process with the developer to do a better job. Testing with

all combination might be impractical.

 It the most preferable choice for testing and requirements management.

 It is a structured exercise to prepare requirements when dealing with complex business

rules.

 It is also used in model complicated logic.

Advantages of Decision Table in Software Testing

There are different advantages of using the decision table in software testing such as:

 Any complex business flow can be easily converted into the test scenarios & test cases

using this technique.

 Decision tables work iteratively. Therefore, the table created at the first iteration is used

as the input table for the next tables. The iteration is done only if the initial table is not

satisfactory.

 Simple to understand and everyone can use this method to design the test scenarios & test

cases.

 It provides complete coverage of test cases which help to reduce the rework on writing

test scenarios & test cases.

 These tables guarantee that we consider every possible combination of condition values.

This is known as its completeness property.

Way to use Decision Table: Example

A Decision Table is a tabular representation of inputs versus rules, cases or test conditions.

Let’s take an example and see how to create a decision table for a login screen:

The condition states that if the user provides the correct username and password the user will be

redirected to the homepage. If any of the input is wrong, an error message will be displayed.

conditions Rule 1 Rule 2 Rule 3 Rule 4

Username F T F T

Password F F T T

Output E E E H

In the above example,

 T – Correct username/password

 F – Wrong username/password

 E – Error message is displayed

 H – Home screen is displayed

https://www.edureka.co/blog/test-case-in-software-testing/
https://www.edureka.co/blog/test-case-in-software-testing/
https://www.edureka.co/blog/test-case-in-software-testing/

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

Now let’s understand the interpretation of the above cases:

 Case 1 – Username and password both were wrong. The user is shown an error message.

 Case 2 – Username was correct, but the password was wrong. The user is shown an error

message.

 Case 3 – Username was wrong, but the password was correct. The user is shown an error

message.

 Case 4 – Username and password both were correct, and the user is navigated to the

homepage.

Decision Trees

A decision tree is a decision support tool that uses a tree-like model of decisions and their possible

consequences, including chance event outcomes, resource costs, and utility. It is one way to display an

algorithm that only contains conditional control statements.

Decision trees are commonly used in operations research, specifically in decision analysis, to help

identify a strategy most likely to reach a goal, but are also a popular tool in machine learning.

A decision tree is a flowchart-like structure in which each internal node represents a "test" on an attribute

(e.g. whether a coin flip comes up heads or tails), each branch represents the outcome of the test, and each

leaf node represents a class label (decision taken after computing all attributes). The paths from root to
leaf represent classification rules.

In decision analysis, a decision tree and the closely related influence diagram are used as a visual and

analytical decision support tool, where the expected values (or expected utility) of competing alternatives
are calculated.

A decision tree consists of three types of nodes:[1]

1. Decision nodes – typically represented by squares

2. Chance nodes – typically represented by circles

3. End nodes – typically represented by triangles

Decision trees are commonly used in operations research and operations management. If, in

practice, decisions have to be taken online with no recall under incomplete knowledge, a decision
tree should be paralleled by a probability model as a best choice model or online selection model

algorithm. Another use of decision trees is as a descriptive means for calculating conditional

probabilities.

Decision trees, influence diagrams, utility functions, and other decision analysis tools and methods are

taught to undergraduate students in schools of business, health economics, and public health, and are

examples of operations research or management science methods.

 Decision tree building blocks

https://en.wikipedia.org/wiki/Decision_support_system
https://en.wikipedia.org/wiki/Tree_(graph_theory)
https://en.wikipedia.org/wiki/Tree_(graph_theory)
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Utility
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Decision_analysis
https://en.wikipedia.org/wiki/Goal
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Flowchart
https://en.wikipedia.org/wiki/Decision_analysis
https://en.wikipedia.org/wiki/Influence_diagram
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Expected_utility
https://en.wikipedia.org/wiki/Decision_tree#cite_note-1
https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Operations_management
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Conditional_probability
https://en.wikipedia.org/wiki/Conditional_probability
https://en.wikipedia.org/wiki/Influence_diagrams
https://en.wikipedia.org/wiki/Influence_diagrams
https://en.wikipedia.org/wiki/Decision_analysis
https://en.wikipedia.org/wiki/Management_science

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

Decision tree elements

Drawn from left to right, a decision tree has only burst nodes (splitting paths) but no sink nodes

(converging paths). Therefore, used manually, they can grow very big and are then often hard to draw

fully by hand. Traditionally, decision trees have been created manually — as the aside example shows —
although increasingly, specialized software is employed.

Decision rules

The decision tree can be linearized into decision rules,[2] where the outcome is the contents of the leaf

node, and the conditions along the path form a conjunction in the if clause. In general, the rules have

the form:

if condition1 and condition2 and condition3 then outcome.

Decision rules can be generated by constructing association rules with the target variable on the

right. They can also denote temporal or causal relations.[3]

Decision tree using flowchart symbols

Commonly a decision tree is drawn using flowchart symbols as it is easier for many to read and
understand.

https://en.wikipedia.org/wiki/Linearization
https://en.wikipedia.org/wiki/Decision_tree#cite_note-2
https://en.wikipedia.org/wiki/Association_rule_learning
https://en.wikipedia.org/wiki/Time
https://en.wikipedia.org/wiki/Causal
https://en.wikipedia.org/wiki/Decision_tree#cite_note-3
https://en.wikipedia.org/wiki/Flowchart

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

Education and training System testing Change over

After acquiring a computer program (system) you are require to change from the old system to the

newly acquired system in a process called system changeover. It involves replacing the old system and

business processes with new once.

General activities carried out during

changeover Replace old hardware

systems with new.

The new system may not be supported by the old hardware system; hence you will be required to replace
them with new, i.e. the new system may require a high speed to process

information. This means that you will require a server that has a bigger RAM and processing speed.

Again you may require more storage space.

Replacing business procedures

New system may mean that you change the procedures that you use to carry out a certain process. If for
example in old system you use to scan customer image before using the system and then now the new

system require to use a webcam to capture image the it means procedure has to change.

Training users

System and other relevant administrators should be trained on how system should be managed because

they will be tasked with maintaining the system. Another group to be trained is the end user who will be
using system for data capturing and entry. Training should be done to give the user confident required

when serving customer.

Conversion of data to suit the new system

If the old and new systems are using different data types then you will be required to convert the data

from old format to new once. If the old system was a manual system then you digitalized data to be used

in computerized system that you want to implement.

System Changeover strategies

Parallel changeover

It involves running both the new and old system concurrently until you are confident that the new

system is working effectively with low risk. The strategy assures a rollback to old system in-case
something goes wrong with the new system. The strategy also allows user time to familiarize with new

system and gain confidence to use it.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

The main shortcoming of this strategy is that it over strains resources because they are required in both

systems. It requires large storage capacity to accommodate both systems. User will be required to do

double entry of data, both in the old and new systems. It is also difficult to compare the two systems and

how they output data because they may be completely different. Another problem comes in determining

for how long you should run the old system before replacing it completely.

Direct changeover

In direct changeover the old system is replace on time with a new system. It is mostly used when the risk

of losing data from the old system is significantly low or if the system has most the functions that are

new. It uses less resource because only one system is running.

With this system if something happens with the

new system then it means no going back to the old system because it is no more. Users are not

confident enough to use system on initial day of system implementation hence they operate relatively

slow on the operation involved.

Pilot changeover

It means choosing a specific location or branch of the organization and implementing the system in that
branch first. The branch (location) where the system is first test before it is implemented in the whole

organization is called pilot site. It allow to test the system on a small scale on all it functionality and make

any changes necessary to avoid any problems when later it is rolled on all organization branches.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

The strategy is used as alternative to parallel change

over because it cost less and it almost achieves the same results.

Phase changeover

Phased involves implementing a module of the system at a time until the whole system is implemented. It
combines the parallel and direct change over strategies. The module can be a functional part of the

system or a specific subsystem. Each sub system is implemented until it succeeds that when the next one

is implemented. It means in case the new system fail then it is only that part that is affected and not the
whole system.

The main challenge is that before the whole system is implemented it may take long time.

Different strategies are used at different time depending with the organization circumstances at that

particular time.

Software maintenance is widely accepted part of SDLC now a days. It stands for all the modifications

and updations done after the delivery of software product. There are number of reasons, why

modifications are required, some of them are briefly mentioned below:

 Market Conditions - Policies, which changes over the time, such as taxation and newly

introduced constraints like, how to maintain bookkeeping, may trigger need for

modification.

 Client Requirements - Over the time, customer may ask for new features or functions in

the software.

 Host Modifications - If any of the hardware and/or platform (such as operating system)

of the target host changes, software changes are needed to keep adaptability.

 Organization Changes - If there is any business level change at client end, such as

reduction of organization strength, acquiring another company, organization venturing

into new business, need to modify in the original software may arise.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

Types of maintenance

In a software lifetime, type of maintenance may vary based on its nature. It may be just a routine

maintenance tasks as some bug discovered by some user or it may be a large event in itself based on

maintenance size or nature. Following are some types of maintenance based on their characteristics:

 Corrective Maintenance - This includes modifications and updations done in order to

correct or fix problems, which are either discovered by user or concluded by user error

reports.

 Adaptive Maintenance - This includes modifications and updations applied to keep the

software product up-to date and tuned to the ever changing world of technology and

business environment.

 Perfective Maintenance - This includes modifications and updates done in order to keep

the software usable over long period of time. It includes new features, new user

requirements for refining the software and improve its reliability and performance.

 Preventive Maintenance - This includes modifications and updations to prevent future

problems of the software. It aims to attend problems, which are not significant at this

moment but may cause serious issues in future.

Cost of Maintenance

Reports suggest that the cost of maintenance is high. A study on estimating software maintenance found

that the cost of maintenance is as high as 67% of the cost of entire software process cycle.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

On an average, the cost of software maintenance is more than 50% of all SDLC phases. There are
various factors, which trigger maintenance cost go high, such as:

Real-world factors affecting Maintenance Cost

 The standard age of any software is considered up to 10 to 15 years.

 Older softwares, which were meant to work on slow machines with less memory and

storage capacity cannot keep themselves challenging against newly coming enhanced

softwares on modern hardware.

 As technology advances, it becomes costly to maintain old software.

 Most maintenance engineers are newbie and use trial and error method to rectify

problem.

 Often, changes made can easily hurt the original structure of the software, making it hard

for any subsequent changes.

 Changes are often left undocumented which may cause more conflicts in future.

Software-end factors affecting Maintenance Cost

 Structure of Software Program

 Programming Language

 Dependence on external environment

 Staff reliability and availability

Maintenance Activities

IEEE provides a framework for sequential maintenance process activities. It can be used in iterative

manner and can be extended so that customized items and processes can be included.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

These activities go hand-in-hand with each of the following phase:

 Identification & Tracing - It involves activities pertaining to identification of

requirement of modification or maintenance. It is generated by user or system may itself

report via logs or error messages.Here, the maintenance type is classified also.

 Analysis - The modification is analyzed for its impact on the system including safety and

security implications. If probable impact is severe, alternative solution is looked for. A

set of required modifications is then materialized into requirement specifications. The

cost of modification/maintenance is analyzed and estimation is concluded.

 Design - New modules, which need to be replaced or modified, are designed against

requirement specifications set in the previous stage. Test cases are created for validation

and verification.

 Implementation - The new modules are coded with the help of structured design created

in the design step.Every programmer is expected to do unit testing in parallel.

 System Testing - Integration testing is done among newly created modules. Integration

testing is also carried out between new modules and the system. Finally the system is

tested as a whole, following regressive testing procedures.

 Acceptance Testing - After testing the system internally, it is tested for acceptance with

the help of users. If at this state, user complaints some issues they are addressed or noted

to address in next iteration.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

 Delivery - After acceptance test, the system is deployed all over the organization either

by small update package or fresh installation of the system. The final testing takes place

at client end after the software is delivered.

Training facility is provided if required, in addition to the hard copy of user manual.

 Maintenance management - Configuration management is an essential part of system

maintenance. It is aided with version control tools to control versions, semi-version or

patch management.

Software Re-engineering

When we need to update the software to keep it to the current market, without impacting its

functionality, it is called software re-engineering. It is a thorough process where the design of software is

changed and programs are re-written.

Legacy software cannot keep tuning with the latest technology available in the market. As the hardware

become obsolete, updating of software becomes a headache. Even if software grows old with time, its
functionality does not.

For example, initially Unix was developed in assembly language. When language C came into existence,

Unix was re-engineered in C, because working in assembly language was difficult.

Other than this, sometimes programmers notice that few parts of software need more maintenance than

others and they also need re-engineering.

Re-Engineering Process

 Decide what to re-engineer. Is it whole software or a part of it?

 Perform Reverse Engineering, in order to obtain specifications of existing software.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

 Restructure Program if required. For example, changing function-oriented programs

into object-oriented programs.

 Re-structure data as required.

 Apply Forward engineering concepts in order to get re-engineered software.

There are few important terms used in Software re-engineering

Reverse Engineering

It is a process to achieve system specification by thoroughly analyzing, understanding the existing

system. This process can be seen as reverse SDLC model, i.e. we try to get higher abstraction level by

analyzing lower abstraction levels.

An existing system is previously implemented design, about which we know nothing. Designers then do

reverse engineering by looking at the code and try to get the design. With design in hand, they try to
conclude the specifications. Thus, going in reverse from code to system specification.

Program Restructuring

It is a process to re-structure and re-construct the existing software. It is all about re-arranging the source

code, either in same programming language or from one programming language to a different one.

Restructuring can have either source code-restructuring and data-restructuring or both.

Re-structuring does not impact the functionality of the software but enhance reliability and

maintainability. Program components, which cause errors very frequently can be changed, or updated

with re-structuring.

The dependability of software on obsolete hardware platform can be removed via re-structuring.

Forward Engineering

Forward engineering is a process of obtaining desired software from the specifications in hand which

were brought down by means of reverse engineering. It assumes that there was some software

engineering already done in the past.

Forward engineering is same as software engineering process with only one difference – it is carried out
always after reverse engineering.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

Component reusability

A component is a part of software program code, which executes an independent task in the system. It

can be a small module or sub-system itself.

Example

The login procedures used on the web can be considered as components, printing system in software can
be seen as a component of the software.

Components have high cohesion of functionality and lower rate of coupling, i.e. they work
independently and can perform tasks without depending on other modules.

In OOP, the objects are designed are very specific to their concern and have fewer chances to be used in

some other software.

In modular programming, the modules are coded to perform specific tasks which can be used across

number of other software programs.

There is a whole new vertical, which is based on re-use of software component, and is known as

Component Based Software Engineering (CBSE).

Re-use can be done at various levels

 Application level - Where an entire application is used as sub-system of new software.

 Component level - Where sub-system of an application is used.

 Modules level - Where functional modules are re-used.

Software components provide interfaces, which can be used to establish communication among
different components.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

Reuse Process

Two kinds of method can be adopted: either by keeping requirements same and adjusting components or
by keeping components same and modifying requirements.

 Requirement Specification - The functional and non-functional requirements are

specified, which a software product must comply to, with the help of existing system,

user input or both.

 Design - This is also a standard SDLC process step, where requirements are defined in

terms of software parlance. Basic architecture of system as a whole and its sub-systems

are created.

 Specify Components - By studying the software design, the designers segregate the

entire system into smaller components or sub-systems. One complete software design

turns into a collection of a huge set of components working together.

 Search Suitable Components - The software component repository is referred by

designers to search for the matching component, on the basis of functionality and

intended software requirements..

 Incorporate Components - All matched components are packed together to shape them

as complete software.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

Unit -4

Introduction to Distributed Data Processing and Real Time System

Distributed systems use multiple central processors to serve multiple real-time applications and multiple

users. Data processing jobs are distributed among the processors accordingly.

The processors communicate with one another through various communication lines (such as high-speed

buses or telephone lines). These are referred as loosely coupled systems or distributed systems.

Processors in a distributed system may vary in size and function. These processors are referred as sites,

nodes, computers, and so on.

The advantages of distributed systems are as follows:

 With resource sharing facility, a user at one site may be able to use the resources available at

another.

 Speedup the exchange of data with one another via electronic mail.

 If one site fails in a distributed system, the remaining sites can potentially continue operating.

 Better service to the customers.

 Reduction of the load on the host computer.

 Reduction of delays in data processing.

Real Time operating System

A real-time system is defined as a data processing system in which the time interval required to process

and respond to inputs is so small that it controls the environment. The time taken by the system to respond
to an input and display of required updated information is termed as the response time. So in this

method, the response time is very less as compared to online processing.

Real-time systems are used when there are rigid time requirements on the operation of a processor or the
flow of data and real-time systems can be used as a control device in a dedicated application. A real-time

operating system must have well-defined, fixed time constraints, otherwise the system will fail. For

example, Scientific experiments, medical imaging systems, industrial control systems, weapon systems,
robots, air traffic control systems, etc.

There are two types of real-time operating systems.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

Hard real-time systems

Hard real-time systems guarantee that critical tasks complete on time. In hard real-time systems,

secondary storage is limited or missing and the data is stored in ROM. In these systems, virtual memory

is almost never found.

Soft real-time systems

Soft real-time systems are less restrictive. A critical real-time task gets priority over other tasks and

retains the priority until it completes. Soft real-time systems have limited utility than hard real-time

systems. For example, multimedia, virtual reality, Advanced Scientific Projects like undersea exploration
and planetary rovers, etc.

Evaluating distributed System

The performance evaluation of hardware and software system components is based on statistics that are
long views on the behavior of these components. Since system resources may have unexpected behavior,

relevant current information becomes useful in the management process of these systems, especially for

data gathering, reconfiguration, and fault detection activities.

Actually, there are few criteria to property evaluate the current availability of component services within
distributed systems. Hence, the management system can not realistically select the most suitable decision

for configuration. In this paper, we present a proposal for a continuous evaluation of component

behaviour related to state changes. This model is further extended by considering different categories of
events concerning the degradation of the operational state or usage state. Our proposals are based on the

possibility of computing at the component level, the current availability of this component by continuous

evaluation. we introduce a several current availability features and propose formula to compute them.
Other events concerning a managed object are classified as warning, critical or outstanding, which leads

to a more accurate operational view on a component. Several counter-based events are thresholded to

improve predictable reconfiguration decisions concerning the usability of a component. The main goal is

to offer to the management system current relevant information which can be used within management
policies the flexible polling frequency tuned with respect to the current evaluation, or particular aspects

related to dynamic tests within distributed systems. Implementation issues with respect to the standard

recommendations within distributed systems are presented. Finally we describe how the reconfiguration
management systems can use these features in order to monitor, predict, improve the existing

configuration, or accommodate the polling frequency according to several simple criteria.

Designing distributed database

Distributed database design refers to the following problem: given a database and its workload, how

should the database be split and allocated to sites so as to optimize certain objective

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

Whether the database is centralized or distributed, the design principles and concepts are same. However,

the design of a distributed database introduces three new issues:

• How to partition the database into fragments.

• Which fragments to replicate.

• Where to locate those fragments and replicas.

function (e.g., to minimize the resource consumption in processing the query workload). There are
two issues: (i) Data fragmentation which determines how the data should be fragmented; and (ii) Data
allocation which determines how the fragments should be allocated. While these two problems are
inter-related, the two issues have traditionally been studied independently, giving rise to a two-phase
approach to the design problem.

The design problem is applicable when a distributed database system has to be built from scratch. In
the case when multiple existing databases are to be integrated (e.g., in multi-database context), there is
no design issue.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

Data fragmentation and data replication deal with the first two issues and data allocation deals with the

third issue.

Data Fragmentation:

Data fragmentation allows you to break a single object into two or more segments, or fragments. The

object might be a user’s database, a system database, or a table. Each fragment can be stored at any site

over a computer network. Information about data fragmentation is stored in the distributed data catalog
(DDC), from which it is accessed by the TP to process user requests.

Data fragmentation strategies, as discussed here, are based at the table level and consist of

dividing a table into logical fragments. You will explore three types of data fragmentation

strategies: horizontal, vertical, and mixed.

Horizontal fragmentation refers to the division of a relation into subsets (fragments) of tuples (rows).

Each fragment is stored at a different node, and each fragment has unique rows.
However, the unique rows all have the same attributes (columns). In short, each fragment represents the

equivalent of a SELECT statement, with the WHERE clause on a single attribute.

Vertical fragmentation refers to the division of a relation into attribute (column) subsets. Each subset

(fragment) is stored at a different node, and each fragment has unique columns—with the exception of

the key column, which is common to all fragments. This is the equivalent of the PROJECT statement in

SQL.

Mixed fragmentation refers to a combination of horizontal and vertical strategies. In other words, a table

may be divided into several horizontal subsets (rows), each one having a subset of the attributes

(columns).

To illustrate the fragmentation strategies, let’s use the CUSTOMER table for the XYZ Company. The

table contains the attributes CUS_NUM, CUS_NAME, CUS_ADDRESS, CUS_STATE, CUS_LIMIT,

CUS_BAL, CUS_RATING, and CUS_DUE.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

Horizontal Fragmentation:

Suppose that XYZ Company’s corporate management requires information about its customers in all

three states, but company locations in each state (TN, FL, and GA) require data regarding local
customers only. Based on such requirements, you decide to distribute the data by state.

Therefore, you define the horizontal fragments to conform to the structure shown in the

following table.

Vertical Fragmentation

You may also divide the CUSTOMER relation into vertical fragments that are composed of a collection

of attributes. For example, suppose that the company is divided into two departments: the service

department and the collections department. Each department is located in a separate building, and each
has an interest in only a few of the CUSTOMER table’s attributes. In this case, the fragments are defined

as shown in the following table.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

Mixed Fragmentation

The XYZ Company’s structure requires that the CUSTOMER data be fragmented horizontally to

accommodate the various company locations; within the locations, the data must be fragmented vertically
to accommodate the two departments (service and collection). In short, the CUSTOMER table requires

mixed fragmentation. Mixed fragmentation requires a two-step procedure. First, horizontal fragmentation

is introduced for each site based on the location within a state (CUS_STATE). The horizontal
fragmentation yields the subsets of customer tuples (horizontal fragments) that are located at each site.

Because the departments are located in different buildings, vertical fragmentation is used within each

horizontal fragment to divide the attributes, thus meeting each department’s information needs at each sub

site. Mixed fragmentation yields the results displayed in the following Table.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

Data Replication:

Data replication refers to the storage of data copies at multiple sites served by a computer network.
Fragment copies can be stored at several sites to serve specific information requirements. Because the

existence of fragment copies can enhance data availability and response time, data copies can help to

reduce communication and total query costs.

Suppose database A is divided into two fragments, A1 and A2. Within a replicated distributed database,

the scenario depicted in the following Figure is possible: fragment A1 is stored at sites S1 and S2, while

fragment A2 is stored at sites S2 and S3.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

Event Based Real Time Analysis Tools

Each real-time design concern for software must be applied in the context of system

performance. In most cases, the performance of a real-time system is measured as one or more time-

related characteristics, but other measures such as fault-tolerance may also be used.

Some real-time systems are designed for applications in which only the response time or the data transfer

rate is critical. Other real-time applications require optimization of both parameters under peak loading
conditions. What’s more, real-time systems must handle their peak loads while performing a number of

simultaneous tasks.

Since the performance of a real-time system is determined primarily by the system response time and its

data transfer rate, it is important to understand these two parameters. System response time is the time
within which a system must detect an internal or external event and respond with an action. Often, event

detection and response generation are simple. It is the processing of the information about the event to

determine the appropriate response that may involve complex, time-consuming algorithms.

Among the key parameters that affect the response time are context switching and interrupt

latency.Context switching involves the time and overhead to switch among tasks, and interrupt latency is

the time lag before the switch is actually possible. Other parameters that affect response time are the speed

of computation and of access to mass storage.

The data transfer rate indicates how fast serial or parallel, as well as analog or digital data must be

moved into or out of the system. Hardware vendors often quote timing and capacity values for
performance characteristics. However, hardware specifications for performance are usually

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

measured in isolation and are often of little value in determining overall real-time system performance.

Therefore, I/O device performance, bus latency, buffer size, disk performance, and a host of other factors,

although important, are only part of the story of real-time system design.

Real-time systems are often required to process a continuous stream of incoming data. Design

must assure that data are not missed. In addition, a real-time system must respond to events that are

asynchronous. Therefore, the arrival sequence and data volume cannot be easily predicted in advance.

Although all software applications must be reliable, real-time systems make special demands on
reliability, restart, and fault recovery. Because the real-world is being monitored and controlled, loss of

monitoring or control (or both) is intolerable in many circumstances (e.g., an air traffic control system).

Consequently, real-time systems contain restart and fault-recovery mechanisms and frequently have built-

in redundancy to insure backup.

The need for reliability, however, has spurred an on-going debate about whether on-line systems, such as

airline reservation systems and automatic bank tellers, also qualify as real-time. On one hand, such on-

line systems must respond to external interrupts within prescribed response times on the order of one
second. On the other hand, nothing catastrophic occurs if an on-line system fails to meet response

requirements; instead, only system degradation results.

BBA 6th Sem-System Analysis and Design (SAD)
BBA-306-B

Prepared By: Ms. Deepa

	System Analysis and Design BBA-306-B
	Q1. What are DFD’s?
	Unit-3

	SYSTEM ANALYSIS AND DESIGN
	BBA-306-B
	CASE TOOLS FOR ANALYST
	What is Entity Relationship Diagram (ERD)?
	FEASIBILITY STUDY
	Technical feasibility
	Method of production
	Production technique
	Project requirements
	Project location

	Legal feasibility
	Operational feasibility study
	Time feasibility
	Resource feasibility
	Financial feasibility
	UNIT-2
	Drawing Tips:
	Forms Design
	Flat Forms
	Unit Set/Snap out Forms
	Continuous strip/Fanfold Forms
	No Carbon Required (NCR) Paper
	Screen Design
	Steps of writing a Report:
	Principles of writing a Report:
	Presentation Modes:
	Management by Exception:
	Importance of writing a Report:
	Equipment Specification and Selection
	Requirement Engineering
	Requirement Engineering Process
	Requirement Elicitation Process
	Requirement Elicitation Techniques
	Software Requirements Characteristics

	Software Requirements
	User Interface requirements
	Software System Analyst
	Software Metrics and Measures
	Personnel Estimates
	Norden’s Work
	E = K/t²d * t * e-t² / 2 t²d
	Effort per Unit Time
	Putnam’s Work
	L = CkK1/3td4/3
	Or,
	I-O Design
	The mathematical operators used within the data dictionary are defined in the table:
	What is Decision Table in Software Testing?
	Why is Decision Table Important?
	Advantages of Decision Table in Software Testing
	Way to use Decision Table: Example
	Decision tree elements
	Decision rules
	Decision tree using flowchart symbols
	Education and training System testing Change over
	General activities carried out during changeover Replace old hardware systems with new.
	Replacing business procedures
	Training users
	Conversion of data to suit the new system

	System Changeover strategies
	Parallel changeover
	Direct changeover
	Pilot changeover
	Phase changeover

	Evaluating distributed System
	Designing distributed database
	Data Fragmentation:
	Horizontal Fragmentation:
	Vertical Fragmentation
	Mixed Fragmentation
	Data Replication:

